1998, 307†

J. Chem. Research (S),

A Novel, One-pot Synthesis of 2*H*-Benz[*e*]-1,3-oxazine-2-thiones†

Lal Dhar S. Yadav,* Sandhya Saigal and Daya R. Pal

Department of Chemistry, University of Allahabad, Allahabad 211002, India

A novel, acid-catalysed cyclisation of salicylaldehyde thiosemicarbazones (1a-d) yields new 2*H*-benz[*e*]-1,3-oxazine-2-thiones (2a-d) in a one-pot procedure.

Salicylaldehyde has been used as a bifunctional building block for preparing various oxygen heterocycles of chemical and biological interest.^{1–5} In pursuing our work on the utilization of thiosemicarbazones in heterocyclic syntheses^{6–8} we have devised a facile, one-pot, general synthetic method for hitherto unreported benzoxazines **2** using salicylaldehyde as the basic starting material.

The present synthesis involves a novel, acid-catalysed cyclization of salicylaldehyde thiosemicarbazones 1 to benzoxazines 2 (Scheme 1). After some preliminary experimentation, it was found that the envisaged cyclization $(1 \rightarrow 2)$ was effective with concentrated H₂SO₄ at 5–25 °C to yield the benzoxazines 2 in high yields (78–86%). However, the use of AcOH, poly(phosphoric acid) (PPA) or dilute H₂SO₄ at various temperatures (5–100 °C) was far less effective resulting in either no cyclization or relatively very low yields (16–55%). The probable mechanism shown is supported by the confirmed formation of hydrazine during the reaction.

Scheme 1

Benzoxazines 2 are required as intermediates for developing potential anticandidal drugs designed to use the peptide transport system as a means for drug delivery.^{9–11} The easy availability of salicylaldehyde thiosemicarbazones 1 and simple operations under mild conditions makes the present cyclization a general synthetic method for benzoxazines of the type 2.

Experimental

Mps were determined in open glass capillaries and are uncorrected. IR spectra were recorded in KBr on a Perkin-Elmer 993 spectrometer. ¹H NMR spectra were recorded on a Perkin-Elmer R-32 (90 MHz) spectrometer using [²H₆]dimethyl sulfoxide as solvent and SiMe₄ as internal standard; J values are given in Hertz. Mass spectra were recorded on a JEOL D-300 mass spectrometer at 70 eV. Elemental analyses were carried out in a Coleman automatic carbon, hydrogen and nitrogen analyser.

Preparation of 2H-Benz[e]-1,3-oxazine-2-thiones 2. General Procedure.—Salicylaldehyde thiosemicarbazone 1 (10 mmol) was dissolved in concentrated H₂SO₄ (10 ml) under ice-cooling (maintaining the temperature of the reaction mixture at <5 °C) and stirred in an ice-bath for 30 min at $< 5 \,^{\circ}$ C. The mixture was further stirred at room temperature (≈ 5 °C) for 4 h. The product was isolated by pouring the mixture into water (50 ml) followed by basification with concentrated NH₄OH under ice-cooling at <5 °C. It was recrystallized from ethanol to obtain an analytical sample of **2** as white needles. **2a** $(R^1 = R^2 = H)$: mp 142–143 °C, yield 80%; $\tilde{\nu}_{max}/cm^{-1}$ 1615 (C=N) and absence of OH, NH and NH₂ bands; $\delta_{\rm H}^{\rm max}$ 7.21–7.96 (m, 4 H, ArH), 8.48 (s, 1H, 4-H); m/z 163 (M^+) (Found: C, 58.6; H, 3.0; N, 8.4. C_8H_5NOS requires C, 58.9; H, 3.1; N, 8.6%). **2b** (R¹=H, R²=NO₂): mp 192–195 °C, yield 83%; $\tilde{\nu}_{max}/cm^{-1}$ 1625 (C=N) and absence of OH, NH and NH₂ bands; δ_H 7.33 (d, J 9.5, 1H, 8-H), 7.99 (dd, J 9.5, 2.6, 1H, 7-H), 8.28 (d, J 2.6, 1H, 5-H), 8.59 (s, 1H, 4-H); m/z 208 (M^+) (Found: C, 45.9; H, 1.9; N, 13.3. C₈H₄N₂O₃S requires C, 46.2; H, 1.9; N, 13.5%). **2c** ($R^1 = NO_2$, $R^2 = H$): mp 180–182 °C, yield 78%; $\tilde{\nu}_{max}/cm^{-1}$ 1625 (C=N) and absence of OH, NH and NH₂ bands; δ_H 7.30–8.16 (m, 4H, ArH), 8.63 (s, 1H, 4-H), $m/z \ 208 \ (M^+)$ (Found: C, 46.4; H, 2.1; N, 13.4. C₈H₄N₂O₃S requires C, 46.2; H, 1.9; N, 13.5%). 2d (R¹ = R² = Br): mp 186–189 °C, yield 86%; $\tilde{\nu}_{max}/cm^{-1}$ 1620 (C=N) and absence of OH, NH and NH₂ bands; $\delta_{\rm H}$ 8.17 (d, J 2.4, 5-H), 7.85 (d, J 2.4, 1H, 7-H), 8.61 (s, 1H, 4-H); m/z 321 (M⁺) (Found: C, 29.7; H, 1.0; N, 4.5. C₈H₃Br₂NOS requires C, 29.9; H, 0.9; N, 4.4%).

Received, 26th January 1998; Accepted, 17th February 1998 Paper E/8/00681D

References

- 1 C. N. O'Callaghan and T. B. M. McMurry, J. Chem. Res., 1997, (S) 78; (M) 0643.
- 2 C. N. O'Callaghan, T. B. M. McMurry and C. J. Cardin, J. Chem. Res., 1990, (S) 132; (M) 0901.
- 3 J. Svetlik, V. Hanus and J. Bella, Liebigs Ann. Chem., 1989, 91.
- 4 J. Svetlik, F. Turecek and V. Hanus, J. Chem. Soc., Perkin Trans. 1, 1988, 2053.
- 5 G. Jones, Org. React. (N.Y.), 1967, 15, 204.
- 6 L. D. S. Yadav and D. R. Pal, J. Chem. Res. (S), 1997, 90.
- 7 L. D. S. Yadav, A. Vaish and S. Sharma, J. Agric. Food Chem., 1994, 42, 811.
- 8 L. D. S. Yadav and S. Sharma, Synthesis, 1993, 864.
- 9 T. E. Fickel and C. Gilvarg, Nature (London), 1973, 241, 161.
- 10 J. M. Becker and F. Naider, in *Microorganisms and Nitrogen Source*, ed. J. W. Payne, Wiley, Chichester, 1980, p. 258.
- 11 P. J. McCartly, P. F. Troke and K. Gull, J. Gen. Microbiol., 1985, 131, 775.

^{*}To receive any correspondence.

[†]This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1998, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*).